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I. INTRODUCTION 

Pre-history 
The years before the birth of the inflationary Universe contained a rich pre-history 

of work in cosmology investigating the cosmological consequences of a Universe dom- 
inated by vacuum energy.’ Vacuum energy is interesting in cosmology because it 
acts as a cosmological constant, and will drive the Universe in exponential expansion. 
Recall that the expansion of the Universe is determined by the Friedmann equation: 
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where a(t) is the cosmic scale factor, p is the energy density of the Universe, and the 
constant k is &l or 0 depending upon the spatial curvature. If the contribution of 
the vacuum energy density pv dominates, then p is a constant (it does not decrease 
with a), and for k = 0 the solution to the Friedmann equation is 

a(t) = a(O)exp(at); HE i z (Tpv)“’ = const. 

Such a rapid expansion may solve several cosmological problems, including the flat- 
ness/age problem, the homogeneity/isotropy problem, the problem of the origin of 
density inhomogeneities, and the monopole problem.’ 

The possibility of a Universe dominated by vacuum energy became much more 
relevant with the realization that the Universe may have undergone a series of phase 
transitions associated with spontaneous symmetry breaking. The work of Kirtzhnits 
and Lindes showed that symmetries that are spontaneously broken today should 
have been restored at temperatures above the energy scale of spontaneous symmetry 
breaking, and as the Universe cooled below some critical temperature, denoted as 
Z’c, there should have been a phase transition in which the symmetry was broken. 
Thus, phase transitions associated with spontaneous symmetry breaking might offer 
a mechanism whereby the early Universe may be dominated by vacuum energy for 
some period of time.’ 

The Classical Era of Old Znjbtion 
Although there was a rich pre-history, the classical era of inflation crystallized 

with the paper of Guth.’ In this classical picture, the Universe underwent a strongly 
first-order phase transition associated with spontaneous symmetry breaking of some 
Grand Unified Theory (GUT). Whether the phase transition is first order or higher 
order depends upon the details of the “Higgs” potential for the scalar field whose 
vacuum expectation value is responsible for symmetry breaking. This theory is now 
usually referred to as “old” inflation. 
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The generic shape of the zero-temperature Higgs potential for a first-order phase 
transition is shown in Fig. la. The crucial feature is the barrier separating the sym- 
metric high-temperature minimum, here located at (T = 0, from the low-temperature 
true vacuum located at o # 0. If the transition is strongly first order, the transition 
from the high-temperature to the low-temperature minimum occurs by the quantum- 
mechanical process of nucleation of bubbles of true vacuum. These bubbles of true 
vacuum expand at the velocity of light, converting false vacuum to true.s 

The bubble nucleation rate (“per volume” will always be understood when dis- 
cussing the bubble nucleation rate) depends upon the shape of the potential. More 
details will be given in Sec. III, but in general, it is written as 

r = Aexp(-B), (1.3) 

where A is a parameter with mass dimension 4, and B, the bounce action, is dimen- 
sionless. A complete explanation of A and B will be given below. For now, let us 
simply assume that A - u,‘, where crO is the msss scale of spontaneous symmetry 
breaking (SSB). 

In the classical picture, the energy density of the Universe became dominated by 
the false-vacuum energy of the Higgs field and the Universe expanded exponentially. 
Sufficient inflation was never a real concern; the problem with the classical picture is 
in the termination of the false-vacuum phase; usually referred to as the graceful exit 
problem. 

Inside the true vacuum bubble is just what one expects-vacuum. For successful 
inflation it is necessary to convert the vacuum energy to radiation. The way this 
is accomplished in a first-order phase transition is through the process of collision 
of vacuum bubbles. In bubble collisions the energy density tied up in the bubble 
walls may be converted to entropy. Thus, if a first-order phase transition is to have 
a graceful exit, there must be many bubble collisions. The decline of the classical 
era began with the realization that bubbles of true vacuum do not percolate’ and fill 
the Universe;s i.e., there is no graceful exit. The basic reason is that the exponential 
expansion of the background space overwhelms the bubble growth. To see this, con- 
sider the expression for the coordinnte (or cornming) radius of the bubble. Assume 
that the bubble is nucleated at time to with zero radius, and expands outward at the 
speed of light. At some time t > to after nucleation, the comoving bubble radius is 

The physical size of the bubble of course is simply R(t, to) = a(t)~(t, to). Notice that 
as t -+ 00, the comoving bubble size approaches a finite value: 

r(w to) = 
exp(--Hto) 

Ha(O) 

Bubbles nucleated at larger tc reach a smaller comoving size than bubbles nucleated 
earlier in the transition. If a bubble is nucleated at time to, at some later time t the 
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bubble has comoving volume v(t,tc) and physical volume V(t, to) given by 

v(t,ta) = 
4x exp( -3Htc) 

$T3(t,to) ---+ - 
3 [Ha(O)]3 

4~ expi3a(t - to)] 
V(t,to) = $R3(t,to) - T HJ , 

where in this section arrows indicate the asymptotic values as t + 00. 
The probability that a point remains in the old (false-vacuum) phase at time t is 

simply 

p(t) = =xp [- /,t &Tl’(t,t0)] --+ exp [-$ (&) Ht] . 

Thus, the probability that a point remains in the false-vacuum phase decreases ex- 
ponentially in time, just as expected. 

Although p(t) decreases exponentially, the volume of space in the false vacuum is 
increasing exponentially. .-\ measure of whether true vacuum regions will percolate 
the space is the fraction of physical space in false vacuum: 

f(t) = p(tW(t) - exp [-F ($1 Ht] exp[3Jft]. 

Clearly whether this fraction increases or decreases in time depends upon the com- 
petition between the decreasing probability for a point to be in the false vacuum and 
the increasing volume of space in the false vacuum. A rough estimate of whether f(t) 
will increase or decrease is the criteria that c = I’/H’ is much greater or much less 
than unity. If E is much less than one the transition will never be completed, while 
if e is much greater than one the transition will be completed, but there won’t be a 
sufficient period of inflation. So if E is small enough to guarantee sufficient inflation, 
it will be too small for percolation to result. 

This graceful e.xit problem led to the decline of the classical era of inflation and 
the dawn of the inflationary dark ages. 

.%w-Rollouer Renaiaance of New Inflation 
Soon after the demise of the original model, inflation was revived by the realization 

that it was possible to have an inflationary scenario without recourse to a strongly 
first-order phase transition. Linde, and Albrecht and Steinhardt proposed that the 
Universe inflates in the process of the classical evolution of the vacuum.’ In the 
classical evolution of the field to its true minimum the field has ‘%netic” energy and 
“potential” energy. If one has a region of the scalar Higgs potential that is “flat,” 
then the velocity of the Higgs field in the evolution to the ground state will be slow, 
and the potential energy of the Higgs field might dominate the kinetic energy. This 
can be made more quantitative by writing the classical equation of motion for a 
spatially homogeneous scalar field o in an expanding Universe under the influence of 
a potential V(U): 
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(1.9) 
If the potential is flat enough that the ii term can be neglected, the scalar field will 
undergo a period of “slow roll.” The schematic representation of such a potential is 
given in Fig. lb. The energy density contributed by the scalar field is /Jo = 6*/2 + 
V(o), and in the slow-roll region V(b) > &*, so the expansion closely approximates 
the exponential solution. This theory is sometimes referred to as “new” inflation. 

The original proposal of slow-rollover inflation was also based upon an SU(5) 
GUT phase transition. The potential was “flattened” by assuming that it took the 
Coleman-Weinberg form. lo However it was soon realized that even this potential was 
not flat enough. If the scalar potential is approximated by a simple potential of the 
form V(o) = X(os - ui)“, in order for density fluctuations produced in inflation to 
be small enough required X < 0( lo- rs ). r1 Clearly such small numbers did not arise 
naturally in simple unified models, and a successful slow-rollover inflation model must 
be somewhat more complicated. Unfortunately, it was soon discovered that there is 
no cosmological upper bound on the complexity of models. 

The Barque Em 
It was soon realized that the requirement of a small coupling constant could not 

easily be accommodated in simple particle physics models. Of course the usual temp- 
tation is to modify the Higgs sector by adding more representations than required in 
the minimal model. In fact a successful model was constructed along these lines.‘s 

For a while it was thought that supersymmetric GUTS could hold the key, but 
they were soon abandoned for a variety of reasons. rs After supersymmetric models, 
some very interesting supergravity models emerged.” Although many supergravity 
models raised new problems of their own,” some supergravity models were quite 
successful, and (at least) gave a proof of existence that the inflationary scenario 
might be implemented in particle models. 

All of these Baroque models suffered from a low re-heat temperature as a result 
of a weakly coupled inflaton. This made baryogenesis problematical, although not 
impossible. All post-renaissance inflation models involved second-order transitions, 
and because inflation occurred in a smooth patch of the Universe that originally 
contained a single correlation region, the observable Universe should contain less 
than one topological defect produced in the transition. This is good news for the 
monopole problem, but bad news for cosmic strings and texture. Furthermore, since 
the inflaton must be very weakly coupled, it cannot be a gauge field responsible for 
the formation of topological defects. We will return to this question in more detail. 

Rococo Inflation 
The complexity of inflationary models was again increased as people started mod- 
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ifying the gravitational sector of the theory. In Rococo inflation the identity of the 
in&ton is up for grabs. There are models where the inflaton is associated with 
the radius of internal dimensions,‘s with the extra degree of freedom in fourth-order 
gravity,” with the scalar field of induced gravity,‘s etc. Some of these models can be 
made to work; it might be said that none work naturally. 

Perhaps somewhere along the line as more and more detail was added to make the 
models satisfy all of the constraints, the message, or at least the spirit, of inflation 
was lost. 

Impressionism 
In response to the excesses of Baroque and Rococo inflation, there grew up around 

Andrei Linde a Russian school of “Impressionist” inflation. In the impressionist style 
no serious attempt is made to connect the details of inflaton with any specific particle 
physics models. In this way the true essence and beauty of the inflationary Universe 
is realized without any of the cluttering details. The best example of this the the 
“chaotic” inflation modelis In this model the scalar potential is assumed to be simply 
V(a) = Ad. What a perfect example of impressionism! This potential embodies 
features common to all scalar potentials without any of the details. Of course it is 
not ‘realistic” in the sense that no one would accept the existence of a scalar field 
whose sole purpose is to make inflation simple, but it can be taken to represent the 
impressions of every scalar field, while at the same time representing no scalar field. 

As Linde has repeatedly emphasized, it is not even necessary to connect inflation 
with a phase transition. In the Xa’ chaotic model the CT field is expected to start 
away from its minimum (at c = 0) due to “chaotic” initial conditions. From there, 
inflation can be analyzed as in slow rollover models. 

Despite the seductive beauty of the impressionist approach we must demand more 

realism. Eventually we want a description of the Universe that has the fme details of 
the Baroque or Rococo but with the simplicity and spirit of impressionism. 

The Postmodem Era 
One of the most interesting modern developments is postmodernism. The post- 

modern movement is characterized by an eclectic mixture of classical tradition with 
some aspect of the recent past. With this definition, it may be said that first-order 
inflationary cosmologies represent a postmodern trend. The classical tradition is a 
first-order transition, while the aspect of the recent past will be embodied by the slow 
rolling of a second scalar field. 

The key to first-order inflation is the relaxation of the assumption that c E r/H’ 
is constant in time. There are two ways one might imagine a time dependence for s. 
The first way is for H to change. Since H = e, either the effective gravitational 
constant G must change or the vacuum energy pv must change.“’ (We will see that in 
many cases the two possibilities are equivalent representations of the same physics.) 
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The second way is for I to change. I wilI also discuss this possibility. Of course, in 
general, both H and I might change. 

If c starts small, much less than one, then there might be a sufficient amount of 
inflation. If E grows and eventually becomes much greater than one, then the bubbles 
of true vacuum will percolate and collisions between the bubble walls might convert 
the false-vacuum energy into entropy. This is the hope of first-order inflation. 

In the next section I discuss a specific model. 

II. EXTENDED INFLATION 

The simplest (and original) model of first-order inflation is extended inflation,” 
which is based upon a Jordan-Brans-Dicke (JBD) g ravity theory. To illustrate ex- 
tended inflation, let us consider a gravitational action including the JBD field @ (with 
mass dimension 2), the metric 9, and a scalar matter field o: 

.WP,g,4 = ~b’=Gi 
a W”@ 1 

x 
1 
-wt+Wg~” w 

cp 
+ -zg~wa&d”u - V(u) 

1 
. (2.1) 

We will assume that V(o) is a potential that leads to a first-order phase transition. 
Here w is a dimensionless parameter. Solar system measurements give a lower bound 
to w: w 2 500. In the limit w -+ co, the theory becomes Einstein gravity with 
@ = (lGirG~)-‘. The field o will play the role of the “inflaton,” i.e., it is the scalar 
field whose vacuum expectation value will drive inflation. We will assume that during 
inflation o sits quietly anchored at its false vacuum value, OFV, and its only effect is 
to contribute a vacuum energy pv = V(r~v). 

Before proceeding, let me say something about the choice of conformal frames. If 
the action contains a term Rip, I will say we are in the Jordan Conformal Frame. I 
will soon perform a resealing of the metric so as to remove the explicit @ dependence 
from the Bicci scalar term. The resulting theory with the usual Einstein-Hilbert form 
for the Bicci scalar, -R/16xG~, will be the same theory expressed in what I will call 
the Einstein Conformal Fmme. 

The equations of motion for a spatially homogeneous Universe are 

0 - b a 2 +L aa 

2 

= pv+w 6 6 0 5 @ ---, lib a@ 

where a dot denotes d/dt. These equations have simple power-law solutions: 

‘P(i) = ip(O)(l + Bty, a(t) = a(O)(l + Bt)w+*‘2, (2.3) 
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where 

a2 G (3 + 2w)(S + 6w)/12 ---+ Us asw-+m. (2.4) 

Note that u(t) increases as a (large) power of time, rather than exponential as in old 
inflation. 

Recall that the crucial parameter that determines if a first-order transition will 
lead to percolation is e = r/H’. We will return to the possibility that F varies in 
time, but for the moment assume that F = const. The fact that @ increases with 
time implies that the effective gravitational coupling 16xG v Cp-’ will decrease with 
time. Therefore H 5 fi will decrease in time. This is exactly what happens as 
can be seen from Eq. 2.3: 

H ~ p = cw + 1/2P 

I 
(w + 1/2)B Bt < 1 

a l+Bt - (w + 1/2)/t Bt > 1. (2.5) 

This is very promising: It is easy to arrange the initial value of c to be much less than 
one so that sufficient inflation results, but eventually E, which grows as t’ for Bt > 1, 
will become greater than one and the true-vacuum bubbles will percolate. In fact we 
can estimate the time of percolation of the true-vacuum bubbles by setting E = 1. Of 
course the end of extended inflation is a somewhat X-defined time, but this definition 
is probably adequate for our purposes. 

I mentioned previousiy that whether one considers extended inflation to result 
from a modification of gravity, or a modification of pv often depends upon one’s 
frame of mind. To illustrate this, consider the theory of Eq. 2.1 expressed in a new 
frame, related to the original frame by a Weyl resealing of the metric in terms of a 
new metric 7j, along with a new definition of the “inflaton” degree of freedom +: 

Qw = R2(z)Yj,; rPcP = (16nGjv-1; 

* = Qoln [a(3 + 2w)/$i] ; $; = (3 + 2w)/16rrGN. 

In this new frame, the Einstein Conformal Frame, the action is 

(2.6) 

+ +vkw 

+exP(-$/&)$““%Kku - exp(-2$/&)V(o)] . (2.7) 

We will generally denote quantities in the Einstein Frame by an overbar. With the 
same assumptions as before, the equation of motion in the new frame are 

0 7i’ 5 2 +;= 8xGN 3 [+ + 4-24lvkJpv] 

$” + 3:+’ = i exp( -2*/&)pv, 
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where prime denotes d/dE. The solutions to the equations of motion arc easily found 
to be 

z(t) = Z(O)(l + cs)3”+“‘z, 7)(Z) = $(O) + &ln(l + CZ), (2.9) 

with 

c = ---& ( 24rGn)1’2 = 2[16nG&(O)]-‘/‘B. (2.10) 

The times in the two frames are related by (1 + Cz) = (1 + Bt)‘. 
In the Einstein frame, the solutions with 0 = guy and V(u~v) = pv resemble 

slow-rollover inflation for $ with an exponential potential V($) = pv exp(-2$/&). 
This fact will be of great use when we consider density perturbations. 

As advertised, a theory with variable G can be expressed as a theory with constant 
G, but variable microphysics. It is necessary to specify two mass scales before one 
can address the question of the constancy of either. In the Jordan frame when we say 
that the gravitational constant changes, of course we mean is that it changes relative 
to some other mass scale, in this case m,. The same is true in the Einstein frame: 
Although G is said to be constant, it nevertheless changes with respect to m,. All 
that has been done is that the time dependence has been shifted to the o sector. In 
reality, there is no observation that can be made that would distinguish between the 
two frames. It is impossible to distinguish an increase in the gravitational constant 
from a decrease in the microphysics mass scale. 

Soon after the original work it was realized that although it is clear that percolation 
eventually occurs, the model was not without its own problems. The problem comes 
about chiefly because of the existence of bubbles nucleated early in the epoch of 
irdlation that grow to become large at the end of inflation.‘2 

To illustrate the big-bubble picture, I follow Weinberg’s analysis.” First, consider 
the expression for the co-moving size of a bubble in extended inflation [cf. Eq. 1.4)]: 

r(t,to) = - 
L(O) 1 [l + &-‘I, - [l + B&-~/Z 1 1 

w-1/2’ 
(2.11) 

for a bubble at time t that was nucleated at time to. Now we would like to calculate 
the volume fraction contained in bubbles greater than some comoving radius, say P. 
This volume fraction will be denoted by Y,(r,tEND). If the bubble had comoting size 
7 at LEND, then the time the bubble was nucleated, denoted by t., can be found by 
use of Eq. 2.11 with the substitutions t + tEND and to --t t.. Now bubbles nucleated 
before t. wilI have a comoving size greater than P. If p(L) = exp[- J,” dt’rV(t.,t’)] 
is the fraction of the Universe in false vacuum at t., then y>(T,tEND) is given by 

v>(T, b&ND) = 1 - exp - [ jo”dt’raJ(t’)~r’(t.,t’)] (2.12) 

a 



This can be easily calculated. It can be shown that for sufficiently large bubbles, 
b(r,tEND) a +, or very nearly a scale-invariant distribution. Of course this scaling 
eventually breaks down, but not until enormous r. 

Now after inflation if finished, there will be a distribution of different bubble 
sizes. The “small” bubbles will quickly have their interiors filled by the entropy 
created in bubble wall collisions. However it takes a finite time for the radiation to 
fill the vacuum bubble, namely a time t = R, where R is the physical size of the 
bubble. The physical size of the bubble at time t and temperature T after inflation 
is simply R(t) = m(t) = Pa(tEND)TEND/T. Clearly bubbles of size R(t) greater than 
the horizon, da(t) m mpl/T’, could not have thermalized. Therefore Eq. 2.12 can be 
used to find the volume fraction of the Universe that remains non-thermalized after 
inflation. 

This fraction is shown in Fig. 2 for two values of w. Clearly the fraction grows 
with w. This is not surprising, since in the w -+ co limit the theory becomes old 
inflation, which we know does not thermalize the bubbles. The serious problem is 
that the limits seem to require that w 5 20, which is in serious disagreement with 
the solar system w s 500 constraints. 

So the simple, original model of extended inflation fails. However, like old inflation, 
it is a very interesting failure. After all, no one really likes JBD with w > 500 as 
a fundamental theory. However, there are many purportedly fundamental theories 
that have some of the features of JBD, including, supergravity, Kaluza-Klein, induced 
gravity, dilatons, and superstrings. In the Section IV I will describe some of the efforts 
to connect a successful first-order inflation theory to a desirable particle physics (or 
gravity) model. 

However, before going on, in the next section I will discuss some interesting ques- 
tions regarding the assumption that r is independent of t. 

III. BUBBLE NUCLEATION IN FIRST-ORDER INFLATION 

In this section I discuss some fundamental problems that arise in the calculation 
of the bubble nucleation rate in first-order inflation, and review some recent work. 
(Some of the work may perhaps even signify progress.) 

The fundamental question regards the time dependence of the bubble nucleation 
rate I’. A related question concerns the gravitational corrections to the nucleation 
rate. First of all, that a potential time dependence to the nucleation rate is potentially 
important is obvious: after all, the crucial parameter is c = r/H’. Why would one 
expect a time dependence to r? I wilI illustrate why in two ways. I will also use two 
ways to illustrate why the present formalisms cannot be used to calculate the decay 
rate. 

First, consider the theory in the Jordan frame, Eq. 2.1. The relevant question here 
concerns the gravitational corrections to the nucleation rate. Recall the Coleman-De 
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Luccia result for nucleation in a de Sitter background. If in flat space the bounce 
action is denoted as B. (c.f. Eq. 1.3) and the critical bubble size in the absence of 
gravity as Bo, then in the thin-wall limit the gravitational corrections on vacuum 
decay result in an effective bounce action ofs 

i3 = [l + (2:cH)z]’ (3.1) 

In old inflation the expansion rate H = (&GM/~) ‘I2 is constant so the gravitational 
correction is a constant. In the case of extended inflation, G and H change in time. 
Since Rc is set by microphysics it should be constant. So one would expect the 
gravitational corrections to the tunnelling rate to also change in time. Equation 3.1 
suggests that as H decreases in time, B will grow. Since I = A exp( -B), as B grows, 
r decreases. Therefore at very early times B should have been larger and bubble 
nucleation should have been suppressed. This is exactly what we want to get rid of 
troubling large bubbles nucleated early in inflation. What we have done to arrive at 
this result is naively to replace GN by G(t). The reason this is not strictly correct is 
that gravity consists of more than usual because the JBD field is also part of gravity, 
and its dynamics must be taken into account. The problem is not so simple as a the 
replacement GN -+ I.6xG 2 @-’ because of the effect of the kinetic term for Q that 
induces an effective + (or G). 

Now consider the theory as expressed in the Einstein frame, Eq. 2.7. Here the 
Ricci term in 3 is normal (the statement that gravity is normal is too strong- 
one can’t forget the influence of the JBD field $), but the inflaton sector is funny 
because $ is mixed into both the kinetic and potential terms for the inflaton and will 
effect the inflaton’s dynamics. A visualization of what happens is shown in Fig. 3. 
For the moment, let’s ignore the fact that $ enters the kinetic term for cr. Then 
we might identify exp(-24/&)V(o) = V(r,+) as the “effective” potential and use 
it to calculate the tunnelling. (Of course the fact that the kinetic term for c is 
not canonical makes identification of an effective potential for (T risky indeed.) The 
effective potential depends upon both 111 and CT. The classical evolution of the system 
starts from the origin and rolls in the 4 direction. At some point in the evolution 
the field tunnels in the cr direction, but not necessarily orthogonal to the $ direction. 
See Fig. 3. 

The generalization of the fate of the false vacuum formalism to two fields would 
be straightforward but for the fact that there is no minimum along the $ axis. The 
generalization of the “most probable escape path” of Banks, Bender, and Wu’s will 
not apply in this case since there is no false vacuum minimum. 

It is easy to see why this presents a problem with the usual boundary conditions 
imposed on the bounce. For simplicity, first consider the flat-space solution. The Eu- 
clidean least-action solution has O(4) symmetry, and is a function of p = (lZ12+t2)“‘. 
The usual bounce boundary conditions are c(m) = I’ = 0, and du(O)/dp = 0 
(here prime refers to d/dp). Recall that upon analytic continuation to Minkowski 
space, p = m corresponds to the false-vacuum region. For the problem of interest, 
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the Euclidean equations of motion do not admit a solution with the above bound- 
ary conditions at p = co. This of course traces to the fact that there is no “static” 
false-vacuum state. The probiem aiso is present in the usual Coleman-DeLuccia for- 
mulation for the gravitational corrections. Clearly the solution must take a different 
form because the Euclidean action contains a term proportional to (3aje/a~)$’ (here 
a~ is the Euclideanized version of the scale factor). The usual solution contains two 
zeros of a~. The Euclidean action for the usual case remains finite due to the bound- 
ary conditions that $’ = 0 at the zeros of an. However in the Euclideanized version 
of the JBD theory there is only one zero of $‘! Again we face a problem. Of course 
the two problems are not unrelated. 

It is suspected that the Euclidean formulation of the tunnelbng problem is not 
appropriate for this problem because in fact in the false vacuum state there must be 
a “real” momentum in the + direction. A formulation of fate of the false vacuum 
appropriate for the rolling and tunnelling problem would be most welcome! 

Although the issue is far from settled, some progress has been made.24*2s~Zs Here I 
will discuss the work I have done in collaboration with Rich Holman, Sharon Vadas, 
Yun Wang, and Erick Weinberg. 2s*zs Rather than limit the discussion to the JBD 
theory, let me start with a slightly more general action, one that will in fact arise in 
some of the models considered in the next section. 

Let us start by considering theories of a JBD field + coupled to an inflaton field 
cr via the following action: 

s = I d’xJ-g 

x 
a aa,+ 

-+R+wg”” Ir 
a 

+ F(@)$g’B,dp - G(@)V(u) 1 . (3.2) 

The simplest coupling functions can be of the form 

F(Q) = (lGxG&~, G(Q) = (16~G~+)~. (3.3) 

To ensure that our theory reduces to general relativity in the appropriate limit, we 
require that for @ = @s = l/l&rG~, F(@s) = G(iPs) = 1. 

I will elaborate on the method developed by us2s which allows us to systemati- 
cally “freeze out” gravitational effects in the bounce, thus enabling us to arrive at 
approximate expressions for the nucleation rate which reflect the time evolution of 
the JBD field Q. 

To implement our approximation, we go to the Einstein Conformal Frame. The 
reason comes from the observation that in the Jordan conformal frame action (i.e., 
Eq. 3.2), the second term is not the complete kinetic term for $!, since an integration 
by parts of the first term will make a contribution to the + kinetic term. Therefore? 
for semi-classical calculations involving the JBD field, it is more appropriate (and 
often easier) to use the Einstein Conformal Frame. Then we may transform back to 
the Jordan frame if we choose. The action of Eq. 3.2 expressed in the Einstein frame 
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becomes 

3= / d+c A? - ,,TG 1 N 
+ ;gq&* 

+f($lvQ +%~~“~ - sw~o)v(~~l . ‘ J 

where 

f(dJlh) = =P(-~lrcto) F(@), id+,/&) = =P(-W/Go) G(*), (3.5) 

and @ = Q($/&) is understood. For the simple couplings of Eq. 3.3, f(Jt) = exp[(n- 

l)+hhl and iA+) = expi(m - W/744. 
Now we wish systematically to freeze out gravitational effects. The action written 

as above in the Einstein frame reveals that if we want to freeze out gravitational 
effects, we must also freeze out the evolution of the + field during the bounce. This 
is due to the fact that we are taking the GN + 0 limit and $0 OE GN-*‘I, thus the 
second term has the same GN dependence as the first term. Treating $ as constant 
also implies that Q must be taken to be constant. This may be aiarming since we have 
to use explicitly the fact that both the scale factor and ip are time dependent to make 
our discussion relevant for inflation. However, we are saved by the observation that 
the (imaginary-time) bounce configuration used in computing the tunneling action is 
distinct from the (real-time) background metric and JBD field configuration governing 
the evolution of the Universe. Thus the latter can remain time dependent while we 
freeze out the time evolution in 11 during the tunneling processas 

Corrections to this approximation can also be considered. We expect, using the 
results of bubble nucleation calculations in standard gravity as a guide, that our 
approximation will be reliable when the effective Planck mass induced by the JBD 
field is much greater than the mass scales associated with the Q field. In theories 
where @ increases with time, the approximation will work best at late times. 

The approximation discussed above yields the following truncated action for the 
inflaton Q in the Euclidean frame: 

SE = / d’z [f(E);Pc+ + sWW] 1 (3.6) 

where t s exp($/&). 
To calculate the bubble nucleation rate (per unit physical three volume) 

T = Aexp(-B), (3.7) 

we need to calculate the bounce action, B, and the prefactor, A. If we rescale the 
coordinates to 

- 
p = &I &a 

\1 f(t) (3.8) 

we can rewrite the action of Eq. 3.6 as 
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SE = 3 /d% [+&,u + V(u)] = g So (3.9) 

where S, is the Euclidean action of the standard theory (i.e., the action of Eq. 3.4 
with [ = 1). Clearly, this implies that the bounce configuration (TB is related to the 
bounce of the theory containing Fs: 

4%) = .%&mm). 
The bounce action is 

B(t) = $$)Bo [f = exP(+/+3)1, 

(3.10) 

where L30 is the (t-independent) bounce action calculated for the theory with t = 1 
($ = 0). The fact that the coupling of $J into the action of Eq. 3.6 can be factored 
out by means of coordinate resealing is essential in enabling us to carry out our 
calculation. 

The prefactor A from Eq. 3.7 is given bye 

Here, LT,FV is the false-vacuum configuration, LTB is the bounce solution, and det’ 
indicates that the functional determinant is to be evaluated in the subspace orthogonal 
to the four translational zero modes. The C, are normalization factors of the zero 
modes of the operator Sg(uB). 

Performing the functional variation of the Euclidean action yields 

A 
det’[Sg(oB)] -“’ 

OET s det[Sg(afv)] 

= det’[-f(f)@ + g(f)V”(o)] -“’ 
W-f(fP + g(t)V”(~FV)I 

(3.13) 

To determine the < dependence of the above expression, we observe that if ‘I!@(t) 
is the eigenfunction of the operator -$ + V”(S) with eigenvalue f3, then 

[-f(f)@ + dcYY41%(~~~) = sw-a^” + V”(~Pew 
= g(f) @ WJrn+), (3.14) 

i.e., qs(dmz) is the eigenfunction of the operator -f(f)9 +g(f)V”(aB) with 
eigenvalue g(f)6’. Since the primed determinant has four eigenvalues fewer than the 
unprimed one, we have 

ADET = ([g(f)]-‘I-“’ &ET = s2(f)&m. (3.15) 
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The C, are defined so that the properly normalized modes are C;“r8,,rr~ (P = 
l,.*. ,4). Thus, C,, = ~d?r(&,u~)r (no sum over p implied), and for an 0(4)- 
symmetric bounce, the C, are all equal. The f dependence of C, can easily be 
found: 

c, = I d’4&4Q)2 = f(f)/g(f) G. 

Hence, the nucleation rate in the Einstein frame is 

~(~1 = f*(f)~exP(-Bof’(f)/g(f)). 

(3.16) 

(3.17) 

Now we may find the nucleation rate in the Jordan frame. Recall that exp($/&) = 
16?rG~@, and that the nucleation rate in the Jordan frame is related to that in the 
Einstein frame by 

r= dP dP m 

dtc.& = d%mJ-s = 
n-T 

= f’f’(f)A^exp(-Bor’(f)lg(f)) 
= A^Fr(~)exp{-&FZ(iP)/G(~)} 

2 and Be are + independent and depend only upon the inflaton potential. Ba is 
dimensionless, while 2 has milss dimension 4. 

For the simple power-law coupling functions in Eq. 3.3, we have 

r = ii(16xG~@)‘” exp[-Bo(16?rGN@)“‘-“]. (3.19) 

In the original extended inflation model m = n = 0, and in the Jordan frame the 
nucleation rate is time independent, although it is time dependent in the Einstein 
frame (as discussed in Ref. 25). However, in dimensionally reduced theories, the 
generic form has m and n different from zero .‘r We see from the above equation that 
if 2n -m # 0 the time dependence of the nucleation probability can be ezponentidy 
strong through the time dependence of @ (or equivalently, $). If 271 - m = 0 but 
n # 0, the nucleation probability is still time dependent in the Jordan frame, and 
time dependent in the Einstein frame if n # 1. 

For arbitrary functions F(iP) and G(a), we can expect much richer time depen- 
dence of the bubble nucleation rate. 

To conclude, in generalized extended inflation theories, the bubble nucleation rate 
acquires an explicit time dependence, even in the limit of freezing out gravitational 
effects. The time dependence will be exponentially strong in the generic case. This 
remarkable feature of the theories encompassed by our model provides optimistic 
prospects for the success of percolation, since the time dependence of the percolation 
parameter e is enriched through the time dependence of the nucleation probability. 

For more details on these calculations, the reader should consult the original 
papers that are highlighted here. The calculation including the fact that the JBD 
field is evolving while the inflaton is tunnelling remains an outstanding problem facing 
extended inflation. 
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IV. MODEL BUILDING 

Although the original extended inflation model failed, it is a most promising fail- 
ure. Were it not for the fact that the large-bubble problem required w to be much 
smaller than allowed by observations, extended inflation would be a viable, :ich, and 
interesting model for inflation. 

In the eighteen months since the extended inflation model there have been several 
attempts to construct models that suppress bubble nucleation at early times, yet 
allow for the inflation to be terminated by bubble collisions. In this section I will 
review some of the attempts. 

Before embarking upon the excursion into model building, it is important to recall 
again exactly why extended inflation failed. The basic fault was the nucleation of 
bubbles early in inflation. This could only be solved if w 5 20, which is at variance 
with the solar system limit w 2 500. The fact that JBD failed should not necessariiy 
be taken as bad. After ail, no one really expects JBD to be the fundamental theory. 
In particular any scalar theory with w 2 500 would be called “unnatural.” 

Somehow a model must be found that can have a small w and not be at odds 
with observation. It is useful to have a rough idea as to why there is the limit 
w 2 500. From Eq. 2.1 it is clear that in the limit that w -+ m the kinetic term for @ 
decouples and * will be constant. So long as Cp remains constant, we could identify it 
as (16aG~)-’ and the theory would be indistinguishable from GR. This essentially is 
the reason for the limit w 2 500. However there is another way to keep Cp constant, 
by giving it a potential to anchor it. The simplest potential one might imagine is a 
mass for @. Most of the extended inflation models are a variation on the theme of 
JBD theories augmented by a potential for a. 

It is also important to recall that the motivation for extended inflation was the 
“small number” problem of slow-rollover inflation, usually characterized by some di- 
mensionless coupling constant having a value less than about 10-i’ or so. We should 
demand that any successful scenario we find should not be infected by the disease we 
are trying to cure. 

Two-field inflation rs 
Perhaps the simplest realization of first-order inflation is a model in which two 

scalar fields are coupled together. In this approach it is assumed that there are two 
scalar fields: one field rolling, and one field trapped in the false vacuum. In keeping 
with previous notation, I will denote the trapped field as Q, the inflaton field, and the 
rolling field as $. The fundamental difference between this approach and extended 
inflation is that the kinetic terms for cr and $, as well as gravity, are assumed to 
be canonical. This model is truly a modification of particle physics, not gravity. 
This model fits into the first-order inflation class, but not into the extended inflation 
subclass. 
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Two-field inflation suffers from the general problem of fine tuning to keep the 
potential for the rolling field flat. This is similar to the usual fine tuning problem of 
extended inflation. 

Here I illustrate two-field inflation with simple model. First, consider a toy po- 
tential for the inflaton field o that will involve a first-order phase transition: 

V(0) = ;u2(u - uo)l - ;cuou’ + li. 

This is the form of the potential illustrated in Fig. la. There is a metastable minimum 
at CT = 0, and a true minimum at 

CTV = 00 [3(1 + e) + 4-1 /4. (4.2) 

The constant A is added to make V(QV) = 0. The nucleation rate of bubbles of true 
vacuum in the thin-wall approximation is r 5 CT: exp( -~2/48Xs3). 

Now suppose we consider a potential involving both the inflaton field D and a 
second scalar field, the slow-roll field +,, of the form 

V(u,$) = ;u+ - uo)’ - ;7p + A + V($), (4.3) 

where V($) is a potential with a minimum at some large value of $, say $,rv. If we 
imagine the slow-roll field to be constant, then we recover the original potential with 
euo = 7). 

In two field inflation the slow-roll field does what it should, slowly rolls. As it does, 
the bounce action proportional to s-s will decrease since the effective value of e is 
proportional to II, which is growing. Therefore the nucleation rate r c( exp(-l/es) a 
exp(-l/@) will grow as + rolls, eventually it is hoped, to grow large enough to 
trigger percolation of true-vacuum bubbles. 

This procedure can be made to work, but at the expense of making the potential 
V($) flat enough for slow roll, which again requires uncomfortably small dimensionless 
coupling constants. One also must worry that after extended inflation there will be 
a period of slow-roll inflation triggered by V(+). A final worry is to prevent V(+) 
from dominating the total potential during extended inflation. It seems that the only 
advantage to the complication of this model compared to rollover inflation is that 
there are interesting phenomena associated with first-order transitions that wilI be 
discussed in the next section. 

For more details on two-field models, see Refs. 28. 

Induced gravity 3o 
The original model of extended inflation failed because the requirement that the 

production of large bubbles not disturb the isotropy of the Universe led to the con- 
straint w 5 20, which is at odds with observational constraints w 2 500. However the 
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observational constraint holds only in “pure!’ Brans-Dicke theories, and if the JBD 
field has a small mass, the constraint will not apply. It is easy to see why: In the limit 
that + = const, Brans-Dicke is equivalent to Einstein gravity. The coefficient of the 
+ kinetic term is proportional to w. As w becomes large, the kinetic term decouples 
from the low-energy theory and Q becomes constant. In this way large-w Brans-Dicke 
theories are indistinguishable from Einstein. However, there is another way to avoid 
the observational constraint; to give the JBD field a mass. If there is some potential 
keeping 0 anchored at some value (namely (16xC~)-‘, then the low-energy limit of 
Brans-Dicke will again resemble Einstein gravity. Models with a potential for @ are 
called ‘induced gravity” models. 

As in the two-field model just discussed, the parameters in any induced extended 
inflation model must satisfy several constraints. Let’s construct a toy model that is 
Eq. 2.1 with a potential V(a) = X(+ - Qo)‘, where Qa = m&/167r. The potential 
enters the equations of motion. For instance the ?J equation becomes 

6+.3$= 1 W(Q) & Pv+V(@)--,m~ 1 1 . (4.4) 

In order for V(@) not to disturb the evolution of the Universe during extended infla- 
tion, we must have 

;a$ < pv; V(G) << PV. 

Both constraints will be satisfied for mg < M’/mpl, where rni = X@po w Am<,, and 

M - p:/’ is the GUT mass scale. For hl N lO”GeV, this implies m* < 10SGeV. 
This is smaller than the natural mass of mpl. This is evidence for a small X. For 
more details, consult the paper of Accetta and Trester.30 

Hypereztended inflation ‘I 
Steinhardt and Accetta have proposed an extended inflation model that they call 

“hyperextended” inflation. In their model they replace the -@R term in the Brans- 
Dicke action by a more general term -f(@)‘R, where f(@) = W + @ +pP/Mz +. . . . 
One might easily imagine a scenario whereby various terms in the gravitational action 
dominate during different epochs: (a) @ ,$ 44” where the first term dominates; (b) 
Ma 5 @ s My/@ where the second term dominates, (c) M’/@ 5 @ where the third 
term dominates, and so on. This is exactly the picture proposed by Steinhardt and 
Accetta. 

It is easy to see why hyperextended inflation works. If f(+) is dominated by one of 
the terms in the series, it is possible to define a new JBD field 8 z f(G) and the stan- 
dard JBD action with 8 as the scalar field will be recovered with w = f(ip)/2f’(@), 
where f’(iP) = df(@)/d@. The equations of motion in the hyperextended model are 
the same 89 in the original extended inflation model with the addition of a term 
proportional to w’ = &Id%: 

17 



$+&= 
a 

& [ky - ,q (4.8) 

Of course this equation reduces to Eq. 2.2 in the limit that w’ = 0. 
In the hyperextended picture extended inflation occurs during regime (b), where 

w’ is small and does not change, the usual extended inflation equations of motion 
obtain. Once @ becomes large enough to enter into regime (c), the expansion rate is 
drastically reduced, and extended inflation ends as H(t) rapidly decreases to a value 
that will give e(t) 2 O(1). Hence in hyperextended inflation, the end of inflation is 
determined by the parameters of the potential that determine the value of CJ at the 
start of regime (c). The constraint that not too many large bubbles are produced 
again amounts to w(b) ( 20, where w(b) is the effective value of w during regime (b). 

L 
Now what about after extended inflation 1 From the above equation for @ and 

$ will be constant in the radiation-dominated era. Once the matter-dominated era 
is reached + will continue to evolve. Steinhardt and Accetta escape the w < 500 
problem in a clever way. Note that w cx l/f’(@). If the function f(iP) has a maximum 
where j’(G) = 0, @ could evolve to that point, the effective value of w will diverge 
decoupling the @ kinetic term from the action, and prevent further evolution of @. 
This will effectively ensure that the solar system tests could not rule out the vaiue of 
the parameters necessary to solve the large-bubble problem. 

For more details on this interesting model, see Ref. 31. 

Overeztended inflation ” 
Holman, Kolb, and Wang s* showed that problems with extended inflation can 

be avoided in a new class of models considered by Damour, Gibbons, and Gundlach 
(DGG).33 They stkrt with a generalized JBD model in which the JBD scalar field @ 
couples with different strengths to “visible” matter and to “invisible” matter (thus 
leading to a violation of the weak equivalence principle). Following the line taken 
by DGG, assume that the inflaton of extended inflation has an “invisible” coupling 
to the JBD scalar field. Since the identity of the inflaton is unknown, there is no 
reason to believe that it should couple to the JBD scalar field in the same way as 
does normal matter. 

The procedure is to start with the usual JBD action written in the Jordan frame, 
and modify the couplings of the JBD field to the inflaton: 

Srls,, *7 ml = / d?c J-s [~(16*GN~)‘-Pg~‘a,~ra,~r 

-( XTG~~)~(‘-~~‘(~~)] , (4.7) 

where the subscript I denotes the inflaton sector. Denoting the field content of visible 
matter by (TV, in the Jordan Frame the action for visible matter, Sv[gMV,gv], would 
simply be the action for a minimally coupled field, e.g., Eq. (4.7) with go -+ 0~ and 
p = 1. Expressing the action in the Jordan Frame, the parameters of the model are 

18 



3 and w. Further suppose that visible matter is described as usual via a perfect fluid 
stress-energy tensor and wiil play no role in inflation. 

Assume for “extended” inflation go = go = const, and V(UC,) = TV, where the 
energy density of the false vacuum, pv, dominates the total energy density (the sub- 
script V on pv refers to %acuum” and not “visible”). Setting A = 8nG.~pv, the 
equations of motion for a(t) and Q(t) are: 

6’ k C-) f- = 
a a2 

+GN~)“8 + ; (;)’ - ;! 

6 i& 
+3-- = 

5 a9 
&(lGnG,v+)‘-‘,“, 

These equations are most easily solved in terms of the dimensionless field .y G 
16xG.~+. This system of equations admits power law solutions for k = 0, just as 
in the original extended inflation scenario: 

a(t) = a(O)(l- BL)P; P = (W - ,a + 3/2)/[(w - 1)Pl 

X(t) = x(0)(1 + my; p = 2/(2P - 1). (4.9) 

Here B is given by 

Bs = 4W(2P - ~)Yx(o)I~-~~ 
(2~ + 3)(6w + 9 -4p’) ’ 

It can easily be seen that the above results reduce to the usual extended inflation 
results when p = 1. 

In order for sufficient inflation to occur, a(t~~~)/a(0) > lo”, where LEND denotes 
the end of the inflationary period. Following the usual analysis, it is possible to relate 
~~END)I~(O) to *(h)/+(O) via ~(~END)/Q(~) = [@(~END)/*(~)]~/~. 

Jiext, consider constraints coming from percolation and thermalization of the 
phase transition. From the analysis of Section III, 

r(t) = ra .p+l = r. [x(q]*“-o’(l + B~)‘(‘-m/(w-~), (4.11) 

where l?o is the (constant) tunnelling rate for x = 1. Thus, as expected, the physical 
bubble nucleation rate per unit four-volume is tine dependent in this theory. 

As usual, the parameter controlling the percolation properties of the phase tran- 
sition is e E X(t)/@(t). Here, 

(1 + B~)WW, (4.12) 

Now turn to the constraint coming from the requirement that the bubble clusters 
that will comprise the observable universe have enough time to thermal& their en- 
ergy. Imposing the condition that V,( T, END) beless than lo-” when the temperature t 
is T, the constraint is: 
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4[23 + logl,(M/lO“‘GeV) + log,,(eV/T)] 

n + logIO{lnk’(tEND)l} 
(4.13) 

It is not unreasonable to suppose that p(iEND) < l/e, so that for M - 1Ol4 GeV and 
R 2: 5, at recombination (T 2 l/3 eV), the constraint is w + 3/2 < 20.7 p*. Xote that 
setting /3 = 1 recovers the standard results. The difference is that whereas before 
the limit was w < 20, the limit now is u/Q2 ( 20, which can easily be satisfied for 
w > 500. 

The constraints on (w,p) from sufficient inflation and thermalization of bubbles 
can be easily satisfied for a wide range of parameters without fine tuning. 

K&m-Klein inflation ” 
One possibility for successful extended inflation might be multidimensional theo- 

ries such as Kaluza-Klein 36 theories. After all, the major motivation for the renewed 
interest in scalar-tensor theories such as Jordan-Brans-Dicke is that an effective low- 
energy theory of the Jordan-Brans-Dicke form follows naturally in superstring, SU- 
pergravity, and Kaluza-Klein theories. 

Upon reduction to four dimensions, theories originally formulated in higher di- 
mensions take on a Jordan-Brans-Dicke form, with a function of the scale factor 
of the internal dimensions, b(t), acting as the Jordan-Brans-Dicke field. Thus, it 
is important to investigate whether these theories can lead to successful models for 
extended inflation. 

Consider a model of higher dimensional gravity coupled to a scalar field 2 with a 
potential c(X) allowing for a met&able vacuum state as well as a completely stable 
one. The action for this theory can be written: 

(4.14) 

Here D is the dimension of the internal space (which we take to be a D-sphere, SD), 
and all the quantities with tildes refer to objects living in the full (4 + D)-dimensional 
spacetime. We now assume that the spacetime line element dYZ takes the form 

dY2 = dt’ - a’(t)dn: - b’(t)dn; (4.15) 

where da: is the line element corresponding to a maximally symmetric 3-space and 
da& is that of a unit D-sphere. Denoting by 20 the zero mode of ji (i.e., the part 
of the harmonic expansion of ji which is independent of the coordinates {y”} of the 
D-sphere),sl we can rewrite ,? as 

s= [/dDq/‘&j]S (4.16) 
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where am,, is the metric tensor of the D-sphere and S is the effective four-dimensional 
action, given by: 

s = Jd% m QDbD(t) --& - D$T;l)g”~ 
1 

i 16rcb* + ;gpw%~o~“2a - fi’(Xo) . 1 (4.17) 

Here pob-’ is the Ricci scalar of the internal space (i.e., constructed from -y,,,,,(y) 
alone). Also {P} are the coordinates in the 4-dimensional space, and giy(z) is the 
metric on this space. Note that the kinetic term for the b field has the wrong sign. 
We will now rewrite S using the following definitions: 

fl, 2 [ JPy vi;i;T] = 2dD”)/‘/r[(D + I)/?) for a D sphere 

!I&=- 1 

16irG 1fkGf.J 

LT E (&b,D)“‘:, 

V(o) = PDC 0 ( (nD;f)l,2) , (4.18) 

where GN is the four-dimensional Newton’s constant. Note that CT is a canonical 
scalar field and V(u) is its 4-dimensional potential. Finally, defining 

to be the effective JBD field, we have 

s = J&z- [-+~-u~~~‘~~~ +a~*‘~ 

+ (lfxG,&) (;g’yB,o&~ - v(u))] , 

(4.19) 

(4.20) 

with w s 1 - l/D and Q: = p,-,(16~GN)-Z~Db~2. Note that a has mass dimension 
2(1+2/D). We have thus recast the Kaluza-Klein action into a JBD form as expressed 
in the Jordan frame.. There are, however, some important differences: (a) + has the 
“wrong” sign for a standard kinetic term, (b) there is a nontrivial self-interaction 
term for *, namely aQ1-‘lD, and (c) there are also a-~ cross terms. 

We may now use the action of Eq. (4.20) t o arrive at the Friedmann-Roberstson- 
Walker (FRW) equations for this system. Setting g = QFV, its value in the false 
vacuum, and defining V(OFY) E pv and A z 8i&~pv, we have the following equa- 
tions of motion in the flat space (k = 0) limit: 

~$+3!!& = -a~1--2/D 2A @. 
a +1+2/D 

(4.21) 
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These equations differ from the extended inflation solutions because of the poten- 
tial term for +. In general, no power-law solutions exists. Numerical integration the 
the equations give the behavior of the JBD field rapidly being driven to zero before 
much inflation. Although this is not a promising model for inflation (extended or 
otherwise), we can learn some things to guide our thinking for the construction of 
a successful model. First, a potential for + of the form here will not work. There 
must be a long, flat region in the potential so enough e-folds of inflation may occur 
before the JBD field is driven to its minimum. Secondly, the potential is sick for small 
@-there is nothing to prevent the extra dimensions from shrinking to zero-the min- 
imum of @ is at @ = 0. Both of these problems have been previously recognized and 
several solutions have been proposed. 

The main problem with this higher-dimensional model in terms of their extended 
inilation properties is that they cannot be made to inflate enough! This is simiiar 
to the problem of induced gravity and two-field inflation. Here the potential for the 
JBD field was set by the curvature of the internal space. There is no way to naturally 
keep that potential flat enough for sufficient inflation. 

For more details the reader should consult Ref. (27). 

V. THE INFLATON SECTOR 

It is clear from the discussion in the previous section that it is possible to construct 
models that satisfy all of the necessary constraints. It is also fair to say that no 
compelling model has yet emerged. In this section we discuss features of first-order 
inflation that may be generic and depend only upon the fact that the inflation is 
terminated by bubble nucleation in a first-order transition. 

Density Perturbations ” 
Density perturbations certainly arise as remnants of the bubbles that are nucle- 

ated during the phase transition; these perturbations have been addressed elsewhere. 
While it is possible that the density perturbations that arise due to the bubbles 
are interesting, it seems uncertain: If bubble nucleation turns on rapidly, there will 
be very few bubbles of cosmologically interesting size; if bubble nucleation turns on 
slowiy, there wilI be too many large bubbles to be consistent with the isotropy of the 
cosmic microwave background radiation (CMBR). Unl ess the bubble nucleation rate 
is just so, it is not possible for relic bubbles to be both interesting and consistent 
with the isotropy of the CMBR. In any case, we will focus on the density fluctua- 
tions that arise due to quantum fluctuations in the various fields in the theory during 
extended inflation. For comparison, in slow-rollover inflation it is these fluctuations 
in the in&ton field that lead to the dominant density perturbations: scale-invariant 
(Harrison-Zel’dovich) curvature perturbations (perturbations characterized by con- 
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stant amplitude at horizon crossing), and that also necessitate a very small coupiing 
constant for the inflaton field. Curvature perturbations arise in extended inflation, 
but they are not quite scale invariant (they have a power-law spectrum), and they 
arise due to fluctuations in the Brans-Dicke field (the field whose value controls the 
value of the gravitational constant). Most importantly, no dimensionless parameter 
needs to be set to a very small value to ensure that they are of an acceptable size. 
The amplitude of the fluctuations is determined by the ratio of the unification scale 
to the Planck scale. 

Now we compute these perturbations by a conformal transformation to the Ein- 
stein frame. In this frame, extended inflation closely resembles slow-rollover inflation, 
with the Brans-Dicke field playing the role of the inflaton with an exponential po- 
tential. For this reason, the formulas derived for curvature fluctuations and graviton 
production in slow-rollover inflation are directly applicable. 

Recall that in extended inflation there is little variation in @ during the matter or 
radiation-dominated regimes? the value of + at the end of inflation, denoted as $E is 
approximately equal to its value today: 

@E C! (167&N)-’ z 7i1;,/16&~ E ~,#tEND2 

where the time tEND corresponds to the end of extended inflation. Generally we will 

be interested in the large-w limit. Since the factor (SW + 5)(2w + 3)/32xw* will 

enter most of the equations, we will denote it as 9. We will also set pv = M’. Since 
the value of @ at the end of inflation will affect our results for the amplitude of the 
density perturbations, one should keep in mind the possibility that in a more realistic 
model % might evolve significantly after inflation, in which case +E would be very 
different from m$,/16a. 

The physical waveiength of a linear perturbation grows with the scale factor of the 
Universe: A,,. IX a(t). During inflation, a given perturbation begins sub-Hubble sized 
and then crosses outside the physics horizon; later, during the matter- or radiation- 
dominated epoch, it crosses back inside the horizon. We will need to know the time t 

that a fluctuation of present physical wavelength X crossed outside the horizon during 
extended inflation; in terms of this time, X is given by 

(5.2) 

where the reheat temperature is assumed to be M and a(tO)/a(tEND) = M/2.75 K. 
Writing x = &pc MpC Y x ~~~10~~ GeV-’ and taking a(tEND)/a(t) 2: (tENo/t)Y+“z 
it follows that 

x Mp. 

tEND 
l/(~-w 

-= 
t 

1pl(w-‘/z) M 

c-1 
x M-1/2) 

qnP1 MPC (5.3) 

23 



In the Einstein frame the Brans-Dicke field $I takes on the appearance of a min- 
imally coupled scalar field with with a potential, V($) = M’exp(-2+/&). The 
equation of motion for $I is familiar: 

w*1 2;+317@7’3+7p. (5.4) 

Assuming that the + field is homogeneous, its evolution is just that of a “slow roller:” 
d$/dt N -(dV/d$)/3R. 

Because + behaves just like an inflaton field and because the gravitational part of 
the action is just that of general relativity, we can compute the curvature fluctuations 
that result from quantum fluctuations in $ by taking advantage of the machinery 
developed for slow-rollover inflation. When a given scale X crosses back inside the 
horizon after extended inflation (denoted by “HOR”) the amplitude of the fluctuation 
on that scale is given by 

P 3B3 

HOR 
~~2--; 

dvldli, 

where the quantities on the right side of Eq. (5.5) are to be evaluated when the scale 
crossed outside the horizon during inflation. Moreover, well after extended inflation 
the Jordan and the Einstein frames coincide so that the curvature fluctuations in both 
frames are the same! That is, the fluctuation amplitude in the Jordan frame-which 
is what we are interested in-is equal to that computed in the Einstein frame-where 
the amplitude that is most easiiy and unambiguously computed. 

Remembering that nrl = 8nV/3m& and dV($)/d$ = -2V/&, it is simple to 
evaluate Eq. (5.5) for (6p/~)~~~: 

M P~+~)/(+IP) 
X- 

( > mPl 

~Mp;/b-vz) 

Note that the power-law spectrum of curvature fluctuations that arise due to 
quantum fluctuations in a, given by Eq. (5.6), b ecomes flatter as w becomes large. 
The amplitude of these fluctuations is very interesting: for w = 10 and M = 10” 
GeV, 

JP ( 1 7 
Ix 4 x 10-4x.&;Q1. 

HOR 
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The associated temperature fluctuations on large angular scales, 0 w 1” to 180°, 
corresponding to scales X w 100 Mpc to 1000 Mpc, are given by’s 

6T ( 1 r 62’” 

~ lojo,(y-‘,~)~q-2,(u-~,2! (gJ-1’2) 

x101/(w-1/2)(~oh)-2/(“-1/Z) 
0 2/(--1/Z) 

0 lo I 

where we use the fact that the comoving scale X corresponds to an angular size 
of 6 = 34.4”(R0h)XMpC at recombination. For w = 10 and M = 10” GeV, the 
temperature fluctuations are certainly too large to be consistent with the current 
limit to the quadrupole anisotropy, 6T/T 5 3 x 10e5. Increasing w or decreasing M 
slightly can remedy this problem, while still predicting fluctuations of an interesting 
size on smaller scales. That bubble nucleation occur rapidly enough so that there are 
not too many large bubbles requires that w must be less than about 2O.e This fact 
together with the desire to associate M with a scale of order the GUT scale seems to 
impiy that the fluctuations wilI be both of an interesting magnitude and not exactly 
scale invariant. The fact that the amplitude of the density perturbations increases 
with scale may be of some importance in that it boosts the fluctuation amplitude on 
large scales. 

Here I have just discussed the adiabatic density fluctuations. Also expected are 
fluctuations in Q, as well as fluctuations in any other effectively massless iield during 
inflation. For details of these fluctuations, as well as details about the calculations 
outlined here. the reader should consult Ref. 39. 

Barycyenesis ” 
One of the most important results in particle astrophysics is the development of 

a framework that provides a dynamical mechanism for the generation of the baryon 
asymmetry. The baryon number density is defined as the number density of baryons, 
minus the number density of antibaryons: ns s nb - ng. Today, no = a& = 1.13 x 

lo-s(R~h’) cm-s. Of course, the baryon number density changes with expansion, so 
it is most useful to define a quantity B, called the baryon number of the universe, 
which is the ratio of the baryon number density to the entropy density s. Assuming 
three species of light neutrinos, the present entropy density is s = 2970 cm-s, and 
the baryon number is B = 3.81 x 10-s(QBhZ). P rimordial nucleosynthesis provides 
the constraint 0.010 5 flBhZ 5 0.017,‘” which implies B = (3.81 to 6.48) x lo-“. So 
long as baryon number violating processes are slow compared to the expansion rate 
and no entropy is created in the expansion, B is constant. 

A key feature of inflation is the creation of a large amount of entropy in a volume 
that was at one point in causal contact. The creation of entropy in inflation would 
dilute any pre-existing baryon asymmetry, so it is necessary to create the asymmetry 
after, or very near the end of, inflation. In order for the baryon number to arise after 
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inflation in the usual picture, it is necessary for three criteria to be satisfied: baryon 
number (B) violating reactions must occur, C and CP invariance must be broken, 
and non-equilibrium conditions must obtain. There are two standard scenarios for 
baryogenesis? In the first picture the baryon asymmetry is produced by the “out 
of equilibrium” B, C, and CP violating decays of some massive particle, while the 
second scenario involves the evaporation of black hoies. 

In the out of equilibrium decay scenario, the most likely candidate for the decaying 
particle is a massive boson that arises in Grand Unified Theories (GUTS). In the 
simplest models, the degree of C and CP violation is larger for Higgs scalars than 
for the gauge vector bosons, so we will assume that the relevant boson is a massive 
Higgs particle. This Higgs is also taken to be different from the inflaton. The Higgs 
of GUTS naturally violate B. The origin of the C and CP violation necessary for 
baryogenesis is uncertain. It is practical simply to parameter&e the degree of C 
and CP violation in the decay of the particle. To illustrate such a parameterization, 
imagine that some Higgs scalar H has two possible decay channels, to final states 
II, with baryon number B,, and fi, with baryon number B2. Consider the initial 
condition of an equal number of H and its antiparticle, B. The H's decay to final 
states fi and f2 with decay widths IT(H -+ fi) and r(H --t fz), while the a’s decay 
to final states j1 and fi with decay widths l?@ -+ fl) and r(B + f*). The decays 
produce a net baryon asymmetry per H-L!? given by 

cEiF2Bi 
r(H + fi) - r(ii -+ ji) 

ra I (5.9) 

where ra is the total decay width. Of course .z can be calculated if one knows the 
masses and couplings of the relevant particles. Reasonable upper bounds for c are in 
the range of 10d2 to lo-‘, but it could be much smaller. For more details, the reader 
is referred to Ref. (2). 

The non-equilibrium condition is most easily realized if the particle interacts 
weakly enough so that by the time it decays when the age of the Universe is equal to 
its lifetime, the particle is nonrelativistic. Then the decay products wilI be rapidly 
thermalized, and the “back reactions” that would destroy the baryon asymmetry 
produced in the decay wilI be suppressed. 

In most successful models of new inflation the reheat temperature is constrained to 
be rather low. This is due to the fact that new inflation requires flat scalar potentials 
in order for inflation to occur during the “slow roll” of the scalar field toward its 
minimum. In order to maintain the flatness of the potential, the in&ton field must 
be very weakly coupled to all fields so that one-loop corrections to the scalar potential 
do not interfere with the desired flatness of the potential. The feeble coupling of the 
inflaton to other fields means that the process of converting the energy stored in the 
scalar field to radiation (“re”heating) is inherently inefficient. Although it is possible 
to overcome this difficulty in several ways, it remains a concern for new inflation. 

The therm&&ion process of bubble wall collision at the end of extended inflation 
provides a natural arena for baryogenesis in the early Universe, as it automatically 
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creates conditions far from thermal equilibrium, exactly as required for B, C, and CP 
violating GUT processes to produce an asymmetry. 

Our only assumption about first-order inflation is that the parameter that deter- 
mines the efficiency of bubble nucleation, t(t) = r(t)/H*(t), where F is the nucleation 
rate per volume and H is the expansion rate of the Universe, has a time dependence 
that suppresses bubble nucleation early in inflation, then rapidly increases so inflation, 
is brought to a successful conclusion in a burst of bubble nucleation. 

In order to keep the discussion as general as possible, consider the salient features 
of the potential in terms of a few parameters that can be easily identified with any 
scalar potential that undergoes spontaneous symmetry breaking. The parameters of 
the potential are assumed to be: 

1. ~0, the energy scale for SSB, i.e., the VEV of the scalar field. 

2. X, a dimensionless coupling constant of the in&ton potential. We will assume 
that the potential is proportional to X. 

3. t, a dimensionless number that measures the difference between the false and 
the true vacuum energy density via pv = tXo,C. < must be less than unity for 
sufficient inflation to occur. 

From these few parameters it is possible to find all the information required about 
the bubbles formed in the phase transition. For instance, an important parameter is 
the size of bubbles nucleated in the tunnelling to the true vacuum. In the thin-wall 
approximation, the size of a nucleated bubble is given by Rc - 3(~X’/2u0)-1. Bubbles 
smaller than this critical size will not grow, and it is exponentially unlikely to nucleate 
bubbles larger than this critical size. We will assume that all the true-vacuum bubbles 
are initially created with size R = Ro. 

Another interesting parameter is the thickness of the bubble wall separating the 
true-vacuum region inside from the false-vacuum region outside the bubble. For the 
potential described above, the bubble wall thickness is 

A - (x”2L7$1. (5.10) 

Note that the ratio of the bubble thickness to its size is A/Rc - t; as advertised, 
if t < 1, the thin-wall approximation is valid. We note here that the results are 
(probably) valid even in the absence of the thin-wall approximation. Finally, the 
energy per unit area of the bubble wall is r~ - X’/ro,3. 

It is necessary to have some idea of the size of bubbles at the end of inflation, 
when bubbles of true vacuum percolate, collide, and release the energy density tied 
up in the bubble walls. The bubbles of true vacuum are nucleated with size R = Rc. 
After nucleation the bubble will grow until it collides with other bubbles. 

As discussed in the first section, bubbles nucleated at late time will have little 
growth in coordinate radius, and any increase in the physical size of such a bubble is 
due solely to the growth in the scale factor between the time the bubble is nucleated 
and the end of inflation. 
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The physical size of a bubble nucleated at time t~uo is related to its coordinate size 
by R(t~“c) = +(t~oc)o(txuo) = Rc. If there is negligible growth in the coordinate 
size of the bubble between the tNuc and end of inflation LEND, then at the end of 
inflation the bubble will have a physical size R(tmm) z R = T(~NUC)U(~END) = 
&[e(ta~o)/a(tNoe)]. Assume that the burst of bubble nucleation at, the end of 
inflation leads to bubbles all of the same size, R = aRc, where cz E Q(~END)/U(~NUC). 

Now we have the picture of the Universe at the end of extended inflation. TO 
a good approximation the Universe is percolated by bubbles of true vacuum of size 
R = nRc, with all the energy density residing in the bubble walls. The next step is 
to examine how the release of energy from the bubble walls into radiation via bubble 
wall collisions takes place. 

Now concentrate on a single bubble of radius R = aRc. The collisions of the 
bubble walls produce some spectrum of particles, which are subsequently thermaliced. 
We need to estimate the typical energy of a particle produced in these collisions. 
When a bubble forms, the energy of the false vacuum has been entirely transformed 
into potential energy in the bubble walls, but as the bubbles expand, more and 
more of their energy becomes kinetic and the walls become highly relativistic. A 
simple calculation shows that if the bubble has expanded by a factor of Q since 
nucleation as discussed in the previous section, then only l/o of its energy remains 
as potential energy. The numerical simulations of bubble collisions by Hawking, 
Moss, and Stewart” demonstrate that during collisions the walls oscillate through 
each other, and it seems reasonable that the kinetic energy is dispersed at an energy 
related to the frequency of these oscillations (see their discussion of phase waves). 
The kinetic energy is presumably dispersed into lower energy particles, and does not 
participate in baryogenesis. We are more interested in the fate of the potential energy. 
The bubble walls can be imagined as a coherent state of inflaton particles, so that 
the typical energy of the products of their decays is simply the mass of the inflaton. 
This energy scale is just equal to the inverse thickness of the wall. Note that by the 
time the walls actually disperse, most of the kinetic energy has been radiated a~ay,‘~ 
so the walls are probably no longer highly relativistic. 

The probable first step in the reheating process is converting this coherent state 
of Higgs into an incoherent state. The next step would be the conversion of the 
incoherent state of Higgs into other particles either through decay of the Higgs, or 
through inelastic scattering. We are assuming that baryon-number violating bosons H 
will be produced in the process. The o field is typically in the adjoint representation of 
the gauge group, while B is typically in the fundamental or some other representation. 
It is possible to envision some symmetry forbidding a direct U-H coupling, or that 
the coupling is very small compared to other couplings. If this is the case, production 
of H relative to other particles will be suppressed by some power of the small coupling 
constant. However in the generic case where all couplings are of the same magnitude 
there will be no suppression. Of course the ultimate answer is model dependent but 
calculable. 

As discussed earlier, bubbles do not grow substantially before percolation in our 
idealized extended inflation model. Hence a remains not too far from 1, although a 
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growth by a factor of 1000 even will not necessariiy rule out the model. The bubble 
wall collisions yield a significant amount of the original false-vacuum energy in the 
form of potential energy, giving rise to high energy particles. The potential energy in 
the bubble walls is given by Mpor = 4r7-R' - 4nX"zc~R2. Taking the mean energy 
of a particle produced in the collisions to be of the order of the inverse thickness of 
the wall, (E) N A-‘, the mean number of particles produced in the collisions from 
the wall’s potential energy is 

(N) 2: .kfpo~/(E) - 4?rAX”%;Rz. (5.11) 

In general, the bubble collisions will produce all species of particles, at least all species 
with masses not too large compared to (E). In the following we will assume that 
this is the case for the baryon-number violating Higgs particles. If the Riggs mass 
exceeds A-t by a significant amount, we can expect some suppression, presumably 
exponential, in the number of Higgs formed. This possibility will be discussed at 
the end of this section. For now, we simply parameterize the fraction of the primary 
annihilation products that are supermassive Higgs by a fraction f~, which in general 
will depend on the masses and couplings of a particular theory in question. The 
typical number of Higgs particles produced per bubble is 

(NE) - frr(N) - 4xf~AX”%;R*. (5.12) 

Now assume that the only source of the supermassive Higgs is from the primary 
particles produced in the bubble-wall collisions. This will be true if the reheat tem- 
perature, TRE, is below the Higgs mass. 

The Higgs particles produced in the wall collisions decay, producing a net baryon 
asymmetry E per decay, where E is given in Eq. (5.9). Hence, the excess of baryons 
over antibaryons produced from a single bubble, Nn = Nb - Ng, is given by 

NB = c(NR) - 47rcfHc7,ZR2, (5.13) 

where we have substituted in for the bubble thickness from Eq. (5.10). This results 
in a baryon number density of 

n.q = N~/(4nR~/3) = 3cf&R-'. (5.14) 

Now calculate the entropy generated in bubble-wall collisions. As stated above, 
the potential energy of a bubble is Mpo~ = ~~u~,JX'~~R~. Including the (possibly 
dominant) kinetic energy contribution, the total mass of the bubble is Maon = 
4x~~X'/~R~a. Thermalization of the mass in the bubble walls will redistribute this 
energy throughout the bubble, resulting in a radiation energy density 

PR - M/(4rR3/3) N 3X"%,3a/R = &,', (5.15) 

which is just the false vacuum energy. The reheat temperature is related to the 
radiation energy density via PR = (g.xz/30)T&, where g. is the effective number 
of degrees of freedom in all the species of particles which may be formed in the 
thermahzation process. From this we obtain the entropy density, s, produced by the 
thermalization of the debris from bubble-wall collisions: 
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2d 
s = -.+JJ& N g;+3/4X3~4g;. 

45 
(5.16) 

From Eqs. (5.14) and (5.16) we can calculate the baryon asymmetry B as 

B ~ y = EfH a-lg;‘l’~-‘l’,y. (5.17) 

Provided the mass of the Higgs is less than TRH, one might conjecture that f~ is 
given simply by ga/g., where go is the number of Higgs degrees of freedom; that is, 
all suitably light particles are produced equally. In general the situation will be more 
complex, and the fraction of Higgs produced will depend on the various couplings in 
the theory. This introduces a model dependence into the picture, though in fact one 
can always regard efH as a single unknown parameter. For simplicity, we assume here 
that all particles are indeed produced equally. Substituting this gives the final result 
B = esE a-lg;‘/‘X-‘/4(‘/4. This all ows us to make numerical estimates of B based 
on sample values of these parameters. Notice that the dependence on both X and 
[, which are the two parameters on which the inflaton’s potential depends, is very 
weak. The important contributions are the degree of asymmetry in CP violating Higgs 
decays, the number of particle species available for production in the wall collisions 
and the factor n by which bubbles expand before colliding. Numerical estimates for 
B based upon this expression will be made in the concluding section. 

It is also interesting to note the possibility of isothermal perturbations arising 
from the thermal&&ion process. While we have assumed throughout this paper 
that at percolation all the true vacuum bubbles have the same size, the full picture 
is somewhat more complicated, as bubbles formed earlier in inflation will grow to 
larger sizes than those formed right at the end. While homogeneity of the microwave 
background requires large bubbles to be suppressed, one would still expect to see a 
range of sizes of small bubbles, and hence spatial variations in the ratio of baryon 
number density to entropy density from point to point. 

In conclusion then, we have seen that the result of the first-order phase transition 
bringing extended inflation to an end is an environment well out of thermal equi- 
librium. In such conditions baryogenesis via the decay of baryon number violating 
Higgs particles can proceed, and we have demonstrated a means by which the baryon 
number can be estimated. The mechanism has further been shown to work for a 
large range of model parameters and to have the capability of predicting a baryon 
asymmetry of the required magnitude. 

For more details on baryogenesis, the reader is referred to the original paper of 
Barrow, Copeland, Kolb, and LiddIe.“’ 

Black Holes 15 
There are three possible sources for the formation of smaU primordial black holes 

after extended inflation. Holes may form via the gravitational instability of inhomo- 
geneities formed during the thermalization phase; there is the possibility of trapped 
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regions of false vacuum (within their Schwarzschild radii) caught between bubbles of 
true ~acuurn;~~ and there is the possibility that black holes are formed in the collision 
process.” 

Unfortunately, the technical details of even estimating the typical number density 
and mass of the black holes formed by these processes are quite difficult. Some 
progress in this direction was made by Hawking, et al.,4’ in the context of the original 
inflationary scenario, and more recently Hsu 4’ has examined black hole production 
from false vacuum regions in extended inflation. In order to keep the discussion on 
a more general footing, for now simply assume that some fraction p of the energy 
after collisions is in black holes, while the remaining 1 - /3 is in radiation,4* and later 
consider the various outcomes implied by the differing values of p. 

The total energy density at the end of extended inflation is partitioned between 
the energy density of radiation, PR, and black holes, psH: 

P(~END) = PR(~END) +PB~(~END) 

PR(~END) = (l-O)P(tEND) = g%% 

PLW(~END) = PP(~END) = JJ&QI~(~END)~ (5.18) 

where TN is the reheat temperature, A& is the initial mass of the black holes formed 
(for convenience we will assume that they all have the same mass), and rz~~ is the 
number density of black holes. The time LEND can also be expressed in terms of 
P(~END): 

(5.19) 

(For matter domination, the factor 3/32n is replaced by l/t%.) From HEND and p we 
also define a “horizon mass” at the end of inflation: 

&OR = $P(tEND)(h,)3 = ($-)l'rpl,~~t~ND~- (5.20) 

(The right hand side is the same in the matter dominated case.) MHOR represents 
the mass within the “physics horizon,” at the end of inflation, and plays the same 
role as the mass within the horizon in the standard FRW model. 

Once formed, the black holes evaporate at a rate given by 

ni,, = -s.-‘,, 
3 M;,’ 

which leads to a time dependence of the black hole mass of 

M;,(t)= J$f - %mil(t - LEND). 

It is convenient to define a black hole lifetime, 

T E M,3/g.m$,, 

(5.21) 

(5.22) 

(5.23) 
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and the expression for the mass as a function of time becomes M(t) = &[l - (t - 
tEND)/T]1’3. The evaporation ends at time tEa = tRH + T. 

Black holes radiate as blackbodies with temperature Z’BR = m&/8xM~a. This 
allows us to calculate what is, for our purposes, the most important quantity-the 
number of particles emitted during the course of the evaporation. Let us first calculate 
the number of particlei emitted while the black hole is between the temperatures T 
and T + dT. The change in mass of the black hole, dM, which is the amount of energy 
radiated as particles, is given by 

(5.24) 

Each emitted particle has energy 3T (the mean energy of a particle in a Maxwell- 
Boltzmann distribution at temperature T), so the number of particles emitted be- 
tween those temperatures is just 

1 
T + dT 

= &dT. 

Integrating this, we find that the number of particles emitted as the black hole tem- 
perature increases from its initial temperature To to 03 is 

Note that this gives the total number of particles emitted. 
It is interesting to consider the possibility that amongst the particles radiated are 

Higgs bosons, again denoted as H, whose decay can lead to the baryon asymmetry. 
Again, B will depend upon the fraction of the particles emitted as H, denoted as f~. 
To determine the appropriate form for f~, the initial temperature of the black hole at 
formation may be important. If it is less than the mass of the Higgs boson, mu, then 
the thermal spectrum in the initial phase of the evaporation will not include Higgs 
as the typical energy is not high enough to produce so massive a particle. Only when 
the black hole temperature has increased to ma will the thermal radiation in&de a 
significant fraction of Higgs. This can lead to an overall suppression in the number of 
Higgs produced during the complete course of the evaporation. Once the temperature 
is high enough to radiate Higgs, we expect that the energy of radiated particles will 
be distributed evenly amongst all radiated species, so that fa is a constant given by 

aliS.. 
Black hole evaporation affects the evolution of both components of the total mass 

density. Since the hole mass is decreased by evaporation, the evolution of the black 
hole energy density, which in the absence of evaporation would be that of nonrela- 
tivistic matter (PNR 0: awJ, where a is the scale factor), is altered. The production 
of radiation from the hole evaporation also modifies the evolution of radiation energy 
density, which normally scales as a-‘. Of course, the departure of the energy densities 
from the normal evolution is most pronounced around the time t N tRa+-r. An exact 
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treatment of this effect is given in Ref. (45), where a network of equations is derived 
describing the evolution of the different components of the energy density and also 
the evolution of the baryon asymmetry. In order to understand the general results, 
let us for the moment ignore the complication resulting from the decrease of the hole 
mass. 

Two different situations arise, depending on whether black holes or radiation dom- 
inate the energy density of the Universe at the time the holes evaporate.48 If fi < l/2, 
then the evolution of the scale factor is that appropriate to a radiation-dominated Uni- 
verse, I.e., a(t) - t112, and the energy density of black holes goes as a-’ o( td3/‘, while 
that of radiation goes as & cc t-‘. Therefore, provided their lifetime is sufficiently 
long, black holes will come to dominate the Universe at a time t. = tEND(1 - p)‘/p’, 
and hence if 7 > t. - tENor they will come to dominate before their evaporation. If 
p > l/2, black holes dominate even initially. If the black holes dominate before evap- 
oration, then their evaporation produces not only the baryons, but also the entropy. 

For the details of the calculations the reader is referred to Ref. (45). Here I shall 
simply summarize the results. 

First consider the case where black hole evaporation occurs before domination. 
This corresponds to small p and initially light black holes. Since the black holes never 
dominate, the Universe expands like a radiation-dominated Universe, with a 0: t112. 
If the black holes evaporate before domination, their radiation will not significantly 
change the background entropy density. 

In this case the final baryon asymmetry is 

BA = y = +fB (:)I” (g)“’ ($--)I” (1 ~p13,,, (5.27) 

where we have used Eq. (5.20). Note that the penultimate factor gives the initial 
black hole mass as a fraction of the horizon mass. 

Now consider the second possibility, that holes evaporate after they dominate 
the energy density. This divides into two further sub-cases; in the former, black holes 
come to dominate at time t. as defined earlier, while in the latter black holes dominate 
immediately after formation. 

In the first of these sub-cases, once t > t. the scale factor evolves as appropriate 
for a matter-dominated Universe, a(t) N P/s, and so pBH(t) = paa(t.)(t./t)’ and 
m(t) = m(L)(Llt)“‘“, with the energy densities equal at t.. 

As before, the evaporation of a single black hole gives a baryon number ng = 
EfaN n&taa). This time, though, the entropy is also determined by the other 
black hole evaporation products, as they provide the dominant contribution. The 
result for the baryon number is 

This expression is very similar to that obtained in the “evaporation before domina- 
tion” scenario; in particular the black hole mass appears in the same functional form, 
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and the prefactors are all the same with the exception of the p term, which naturally 
has changed as we move to a different physical situation. The last factor demonstrates 
how a long black hole lifetime dilutes the baryon asymmetry obtained; if r is very 
small this factor is just equal to one, while for 7 > tea we get a reduction in the 

baryon asymmetry by a factor of about Mi/MHoRm&g*. Clearly, this factor can 

be important for long-lived (initially massive) black holes. These are also exactly the 
type of holes that one might expect to survive long enough to come to dominate even 
if p is originally substantially less than l/Z. 

We now examine the second sub-case of black hole domination-that in which the 
black holes dominate even initially. The black hole energy density is now given by 
ma(t) = PBB(~RH)(~RH/~)~, and 

BB2 = +f” (~)“‘(~)“‘(&)l’*p~P (1+ $y, (5.29) 

whichis just Eq. (5.28) multiplied by (p/(1-/3)) 1/4. This factor represents the dilution 
of the black hole energy density up to domination. As expected, Eqs. (5.28) and 
(5.29) match in the case of marginal domination where p = l/2. The p dependence 
in Eq. (5.29) simply reflects the fraction of the horizon mass contributed by black 
holes. It differs from Eq. (5.28) because here there is no evolution in the initial 
radiation-dominated phase, hence no era of dilution before domination. In the case 
of Eq. (5.28) an extra multiplier of [( l-p)/p]‘I’ is needed to account for the evolution 
in the initial radiation-dominated phase. 

This completes the set of results for the different regions of domination, and is 
summarized in Table I. Many more details are to be found in the paper of Barrow, 
Copeland, Kolb, and Liddle.45 

Table I. Results for the baryon number produced by black hole evaporation 
depend upon p (the fraction of the energy of the Universe in black holes 
at t = LEND, where LEND is taken to be the end of inflation), t. (the 
time at which the black holes dominate the mass of the Universe), and 
T = M&/g.m$.l (the lifetime of a black hole of mass IVBX). 

P 7 B E nB/a 

P < 112 T < t. - tEND Eq. (5.27) 

I P < l/2 i- > t. - tEND Eq. (5.24 / 
1 p > l/2 independent of r Eq. (5.29j ] 

Topological Defects 5o 
I have already discussed the generation of adiabatic density fluctuations during 

extended inflation. However there might very well be a different mechanism for the 
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formation of structure after extended inflation, namely the formation of topological 
defects in the inflaton field formed as it passes through the phase transition. Cal- 
culations of the false-vacuum decay rate made so far consider the evolution from a 
false-vacuum state to a unique true-vacuum state. However, the inflaton is far more 
likely to have degenerate minima, especially if it is part of a grand-unified Higgs 
sector. 

Recall the standard picture of defect formation in a smooth second-order phase 
transitionsi At eariy times the universe was very hot and the fields describing in- 
teractions were in a highly symmetric phase. However as the universe expanded and 
cooled, symmetry breaking occurred, which may have left behind remnants of the old 
symmetric phase, possibly in the form of strings, domain walls or monopoles. Here, 
we concentrate on strings. 

Strings appropriate to galaxy formation are required to have a line density of 
G/J - 10-B where p - ui, corresponding to a breaking scale of 10-s Planck masses. 
UnfortunatLly, generic new and chaotic inflationary scenarios occur at or below this 
energy scale, and hence the strings form before or early in the inflationary epoch and 
are rapidly inflated away. It has been demonstrated that the universe cannot be made 
to reheat after inflation to sufficiently high temperatures as to restore the symmetry of 
the string-forming field and allow a new phase of string formation after inflation.stJ3 
This leads to the incompatibility of cosmic strings with new or chaotic inflation. These 
arguments apply whether the inflaton and the cosmic string fields are the same field 
or different ones (in chaotic inflation the inflaton field can never be identified with 
the cosmic string field as the symmetry is broken even initially). In the case where 
the cosmic string field is distinct from the inflaton field, models have been proposed 
which resolve the conflict. The model of Vishniac, Olive, and Seckelss couples the 
inflaton and the string field in a particular way, but the only motivation for doing this 
is to solve the strings-inflation problem, so their solution appears unnatural. More 
recently, Yokoyama5’ has suggested that a non-minimal coupling to gravity of the 
string field can hold it in its symmetric phase during inflation, and allow strings to 
form at the end of inflation. 

Now consider the picture of string formation in extended inflation, where the fact 
that the transition is first order has crucial consequences. As the Universe cools 
from high temperatures, a complex scalar field is trapped in a false-vacuum state and 
the Universe enters a phase of rapid power-law expansion. Bubbles of true vacuum 
then begin to nucleate and grow at the speed of light. Due to the presence of event 
horizons in the idating Universe they grow to a constant comoving volume which 
depends on their time of formation. The important ingredient to our scenario is that 
each bubble forms independently of the rest, and so there is no correlation between 
the choice of true vacuum made in each bubble from the selection of degenerate true 
vacua. Eventually the bubbles grow and collide, finally percolating the Universe and 
bringing the inflationary era to an end. 

At the end of inflation, the collision of bubble walls (in which all the energy is 
held) produces particles and causes thermalization of the energy. However, because 
the scalar field is only correlated on the scale of a bubble, we can expect topological 
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defects to be present. The usual arguments state that there is typically of order one 
cosmic string per correlation volume of the scalar field, and hence we expect roughly 
one string per mean bubble size at the end of inflation. 

This model for the formation of strings allows for the existence of large voids, 
which would be a consequence of the rare large bubbles. Although the typical string 
separation at the end of inflation is &, extended inflation allows for the possibility 
of rare large bubbles, formed by quantum tunnelling early in inflation. The true 
vacuum formed inside bubbles contains no matter (any matter originally in that 
volume is assumed to be inflated away while the scalar field dominates the energy 
density). All the energy of the Universe after inflation is contained in the walls of 
the expanding bubbles which collide to form matter and to cause thermalization of 
the energy density. After collisions, matter will flow back into the void, though as 
it cannot travel faster than light, we can calculate the minimum time the bubble 
will require to thermalize. A large bubble will have a coherent scalar field vacuum 
and hence no strings will be formed within it-we can thus expect the interior of the 
bubble to evolve into a large region void of strings. If cosmic strings are to provide 
the seeds for galaxy formation, then we can expect to see few or no galaxies within 
the void. The presence of voids is an additional property of this model which may 
help explain observed large-scale structure. 

In fact, at the time of percolation the bubbles may have a range of sizes, which can 
lead to the formation of an initial string network differing from the usual one. As the 
correlation length is essentially just the bubble size, and because there would appear to 
be no a priorireason why bubbles everywhere should be ezactly the same size (at small 
sizes the assumption of a scale-invariant bubble size distribution would seem more 
reasonable), the strings will be formed with a randomly spatially varying correlation 
length. This will presumably lead to higher densities of strings in some regions than 
others, which again may have implications for structure formation, depending on how 
much the effects of the initial string distribution might be wiped out by the future 
evolution and decay of strings. One desirable effect of a more dilute string network 
would be to avoid the uncomfortable bounds from gravitational wave production from 
small string loops. ss The fact that the correlation length will generically be greater 
(and in some models perhaps much greater) than that of the Kibble mechanism may 
also have important implications, though perhaps not as great as one might naively 
suppose if the small strings rapidly disappear from the network once string evolution 
commences. 

These formation arguments can be equally well applied to the cases of domain 
walls and monopoles, again giving rise to an estimate of order one defect per bubble 
at the time of bubble collision. In the case of domain walls this will give rise to 
an excessive number, and wilI be disallowed on cosmological grounds. Hence, any 
extended inflation model featuring a potential with domain wall solutions (i.e., a 
disconnected vacuum manifold) can be ruled out. The situation is less clear for 
monopoles, because the correlation length may well be substantially greater than 
that of the Kibble mechanism and hence proportionally fewer monopoles are expected. 
However, standard estimates of the cosmological monopole abundances’s give values of 
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perhaps twenty orders of magnitude in excess of the Parker limit,5’ so the correlation 
length would have to be increased by seven or eight orders of magnitude before being 
within experimental limits-such an increase seems very unlikely. 

If we consider the unification to be part of a grand-unified theory, the problem of 
monopole overproduction must be addressed, as any breaking to the symmetry of the 
standard model must produce monopoles at some stage. The simplest method is to 
arrange for monopoles to be formed in a partial symmetry breaking and then later 
inflated away in a second transition. 

For more details, the reader should see the original paper of Copeland, Kolb, and 
LiddIe.ss 

Gmvify Waues 5s 
One of the most interesting new ieatures of a completed first-order phase transition 

is the observation by Turner and Wilczek that a significant amount of gravity waves 
might be produced in the reheating process.ss 

The beauty of this observation is that it is largely independent of the details of the 
particular extended inflation model. In the picture of reheating I have been describing 
here, bubbles of size R and mass Muun collide. Furthermore, the bubbles are most 
likely relativistic, or at least semi-relativistic, when they collide. The luminosity in 
gravity waves emitted in such a close encounter can be estimated from the quadrupole 
formula: 

2-G %UB 
N-jjT’ 

Thus a bubble collision releases an energy Ecw given by 

GJB 
EGW - RLcw - GN-, 

R 

in the form of gravitational radiation with wavelength R. 
Of course it is most useful to compare this energy with the total energy released in 

the bubble collision. Since the total mass of the bubble, Mnnn, is eventually released 
into radiation, then the ratio of the gravitational wave energy density to the radiation 
energy density is 

EGW 
SGW = - 

MBTJB 

Msuri 
- GN-. 

R 
(5.32) 

If this is true after extended inflation, then the present ratio would be approximately 
g.(today)/g.(Tm) N 0.01 times this value. Since the contribution to R in radiation 
is today about 3 x lo-sh-r, and pow and in both decrease in expansion as om4, this 
implies that today &whr N lo-‘cow. 

The wavelength of the gravitational radiation today would simply be the wave- 
length at creation, X(Z’nn) .-- R, redshifted by the expansion of the Universe: 
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X(today) = R[a(today)/a(TRa)] - RTmz/2.7 K - 4~10~‘R(~~~/10~*Ge~),(~.33) 

where again we have assumed that the re-heat temperature is comparable to the mass 
scale of symmetry breaking M. 

Now the question is what to use for R. Turner and Wilczek make the reasonable as- 
sumption that the size of the bubble is the particle horizon at the end of extended infla- 
tion. If this is true, then GNMsm/R is about unity, EGW - 0.01: and Rcwh’ - 10e5. 
The fact that EGW is about unity in this case is easy to understand: masses the size of 
the horizon are moving about with velocities of about the velocity of light! This choice 
for R also predicts R - H-l z mp,/M* - 2 x 10-19(101’GeV/M)~cm, which leads 
to a present wavelength for the gravity waves of X(today) = 8 x 103(10’4GeV/M) cm. 
This is quite interesting because it is within the sensitivity and wavelength range of 
LIGO II and other large second-generation interferometric detectors. 

However it might be equally possible that the bubbles are much smaller. The 
smallest they might be is Rc, their critical size. Let’s take the pessimistic view 
that R - 1M-‘. If this is true, then ~GIY - GNMBUB/M = MmM/m;,. If the 
bubble size is M-’ and the false-vacuum energy is of order M’, then M~UB - M, 
and E - M2/m;, .-.. 10-‘0(M/1014GeV)Z. This would lead to a present value of 
&wh’ - 2 x 10-15(M/10”GeV)Z. Another price to be paid is that the present 
wavelength of the gravity waves would be much smaller: X(today) = 8 x lo-* cm. 
This is too small in magnitude and wavelength for interferometric detectors. 

Clearly the correct answer is model dependent. The latter assumption is most 
likely far too pessimistic, while the former assumption may turn out to be somewhat 
optimistic. 

V. CONCLUSIONS 

It is clear that rumors of the death of first-order inflation were premature. It offers 
rich and beautiful possibilities for cosmology. It is z&o clear that no beautiful and 
compelling model has emerged. Both modifications to the gravity sector or to the 
microphysics sector seem to lead to possible models. There is much work to be done 
in model building. 

One outstanding problem that seems interesting in its own right is the problem of 
two-field tunnelling discussed in Section III. There must be a new formalism developed 
here. This formalism will have applications outside of cosmology. 

Even without the guidance of a definite model it is possible to say that interesting 
new phenomena are predicted in a completed first-order phase transition. Mentioned 
in this review are several: density perturbations, baryogenesis, black hole formation, 
generation of topological defects, and gravity waves. The rough outlines of these phe- 
nomena have been considered, but much work remains to be done. Even estimating 
the spectrum and number of black holes produced in bubble collisions seems difficult. 
The details of bubble collisions are important for reheating, baryogenesis, and gravity 
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wave production. Probably some serious numerical work is required. The first step 
in this direction was taken by Hawking, Moss, and Stewart, but it was indeed only a 
first step. 

First-order inflation is an attractive alternative to the usual slow rollover inflation 
models. 
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FIGURE CAPTIONS 

Figure 1: Generic forms for the zero-temperatre potentials for a first-order phase 
transition (la) and a higher-order transition (lb). The broken curve in (la) indicates 
the high-temperature limit of the potential. The high-temperature minimum of the 
potential becomes a false-vacuum state of the zero-temperature potential. 

Figure 2: The fraction of the volume of the Universe that has not thermal- 
ized as a function of temperature 2’ in units of the mass scale of the potential M 
for Jordan-Brans-Dicke extended inflation models with the indicated values of w. 
The temperature of big-bang nucleosynthesis (BBN) and recombination (REC) are 
indicated for two different choices of M. 

Figure 3: In the E,instein conformal frame the evolution of the two scalar fields 
is determined by a potential of this form. The classical behavior of the system is for 
the the JBD field 4 to slowly roll. The quantum behavior is for the inflaton field (r 
to tunnel from g = 0 to its true-vacuum value. 
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